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ABSTRACT 
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may b e  app l i ed  is i d e n t i f i e d .  Also, s u f f i c i e n t  condi t ions are estab-  

l i s h e d  which guarantee t h a t  t h e  off-diagonal elements of t h e  reduced 

matrices converge q u a d r a t i c a l l y  t o  zero. 
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I. Introduction 

Recently there has been a considerable effort made to formulate, 

analyze and compare methods for solving linear systems of equations on 

vector or parallel processing computers [ 2 ] .  Cyclic odd-even 

reduction has been found to be an effective method for solving certain 

types of tridiagonal linear systems on vector processors [ 4 ,  51. 

In a recent paper, Rodrigue, Madsen and Karush [ 7 3 developed a 

generalization of the odd-even reduction algorithm which is applicable to 

general banded systems of linear equations. Sufficient conditions were 

established which guaranteed that a single odd-even reduction step 

could be performed. However, no ciass of non-tridiagonal natrix problems 

has been identified and no conditions have been established which guarantee 

that the odd-even reduction algorithm can be applied in a cyclic fashion 

in order to fully solve the original banded linear equation problem. 

is essential if the algorithm is to be of any practical use. 

In this paper we will demonstrate how to modify the Rodrigue, Madsen 

This 

and Karush algorithm so that it can be applied to symmetric circulant 

matrix problems. Moreover, we will establish that this algorithm can 

be applied in a cyclic manner to a subclass of nonsingular symmetric 

circulant matrix. Also, we will establish conditions which are sufficient 

to guarantee that the off-diagonal elements of the reduced matrices con- 

verge quadratically to zero. This property has been previously established 

for certain classes of tridiagonal matrix problems [ 3 ] and can be used 

to terminate the solution process early, thereby saving some computation 

time. 



We will adopt the same vector and matrix notation as in [ 6 ,  7 1. 

Of primary use will be that an n x n  real matrix A will be denoted by 

A =  (a.) for -(n-l)Z j < n-1 - -J 

where for j > O ,  the vector a is the j-th superdiagonal of A and 

the vector a is the j-th subdiagonal of A .  Equality, multiplica- 

tion, addition and division of equal length vectors are defined component- 

wise in the obvious manner. When a vector is set equal to a scalar e.g. 

-j 

- -j 

= c  we mean that each component of a equals c. 
-aj -j 

11. Class of Problems 

One of the purposes of this paper is to identify a class of linear 

equation problems for which cyclic odd-even reduction may be used as a 

solution process. This class of problems is a subset of the collection 

of real square matrices whichare commonly known as circulant matrices. 

Matrices of the type 

A =  

I co C 
1 

C ... 
n- 1 

C C C 1 ‘n-1 0 1 n- 2 

n- 2 C C n- 1 0 

c -... 
2 

C n- 3 . 
. 
0 

C 
- 0 

where the c are real numbers are defined to be real circulant matrices. 

Circulants occur in a variety of applications in solving physical problems 

i 

[ 1 1. Clearly any n x n  circulant matrix has constant diagonals and is 

determined by the n-tuple of numbers (co, cl, ..., c ) . Using the n- 1 
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notat ioi i  of t h e  previous section, 

is a c i r c u l a n t  mat r ix  i f  

a m t r i x  A =  (a ) , ii= 1 zj < E =  1 - -j 

a = c  j =l,.  . . , n - 1  
n-j - -j 

and 

j = O , l ,  ..., n - 1  , % = ‘j 

where (c  , c  , ... c ) is  any n- tuple  of real numbers. 
0 1  n- 1 

For c i r c u l a n t  matr ices  i t  i s  q u i t e  convenient t o  modify s l i g h t l y  t h e  

matrix no ta t ion  of t h e  previous s e c t i o n  so t h a t  each of t h e  vec to r s  used 

t o  def ine  t h e  matr ix  has  the  same length .  So if 

is a c i r c u l a n t  matrix w e  extend t h e  d e f i n i t i o n  of t h e  vec to r s  a. as 

shown below s o  t h a t  each vector  w i l l  now have length  

A = (a .  1, -(n - 1 )  I j S n - 1, 
-J 

__ I  

J 

n 

C C c .. c C C 
0 1 2 n-3 n-2 n-i 

C C C C n-3 C n-2 
1 n-i o 

C n-2 C n-1 C o 

0 

C n- 3 

0 . 
. . 

C 
2 

C C 
0 1 = 2  

C n-3 C n-2 C n-1 C o c . .  c 
1 2 
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With t h i s  ex tens ion  i t  i s  clear t h a t  an n x n mat r ix  A =  (aj) i s  

if and only a c i r c u l a n t  matr ix  determined by t h e  n- tuple  (c  ,e1 . c 
0 n- 1 

i f  i71j = c j  for  j = 0 , 1 ,  2,  ..., n - 1 .  We no te  t h a t  each diagonal  v e c t o r  

except a 

and w e  w i l l  

t i o n ,  s i n c e  

d i s t i n c t i o n  

- 0  
can now be i d e n t i f i e d  by two names, i.e. a o r  a 

use whichever is  t h e  more convenient.  To s impl i fy  t h e  nota- 

each vec to r  a has  a l l  components equal ,  w e  w i l l  drop t h e  

between t h e  s c a l a r  component and the  vec to r  i t s e l f  and simply 

-j - - (n-  j)’ 

-j 

denote e i t h e r  or both by a . 
j 

It i s  obvious t h a t  t h e  sum of two c i r c u l a n t  matrices i s  a l s o  c i r c u l a n t .  

It is no t  q u i t e  as evident  t h a t  t h e  product 

A and B i s  a l s o  c i r c u l a n t .  However, t h i s  can be e a s i l y  seen  by w r i t i n g  

A =  ( a . )  , -(n - 1 )  5 j 5 n - 1 

k = O , l ,  ..., n - 1  where % has i t s  only nonzero e n t r i e s  given by the  

diagonal  % ,  Each % is  simply a scalar mul t ip l e  of a c y c l i c  permuta- 

t i o n  of t he  rows of t h e  n x n  i d e n t i t y  matr ix .  We now w r i t e  

AB of two c i r c u l a n t  matrices 

as t h e  sum of n c i r c u l a n t  mat r ices  % , J 

A B = ( A  + A  + * * + A  ) * B = A B + A B + * - * + A n l B .  - 
0 1  n- 1 0 1 

Each of t he  terms %B i s  a c i r c u l a n t  because mul t ip ly ing  by % 
simply sca l e s  t he  e n t i r e  mat r ix  B and c y c l i c a l l y  permutes i t s  rows. 

Thus AB must be a c i r c u l a n t  matrix and w e  have t h e  fol lowing lemma. 

Lemma 1: 

If  A and B a r e  c i r c u l a n t  mat r ices  and C - A B ,  then C 

i s  a c i r c u l a n t  matrix. 

It w i l l  be use fu l  t o  develop a simple formula using t h e  c u r r e n t  

n o t a t i o n  for  computing t h e  product of two c i r c u l a n t  matrices. If 

A =  ( a j )  , B =  (b j )  , and C =  ( c . )  f o r  - ( n - 1 )  5 j 5 ( n - 1 )  are c i r c u l a n t  
J 
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matrices such t h a t  C = A B ,  then C m y  be c c ~ p u t e d  by the follcving 

formula : 
n-1 

c = akbj-k for j =0, 1 ,..., n-1. 
j k = O  

Since C is completely determined from the n scalar entries of its 

first row, this formula is most easily verified by just computing these 

values. This result also may be verified by applying the matrix multi- 

plication by diagonals algorithm of Madsen, Rodrigue and Karush [ 6 ]  

to circulant matrices. We note that the diagonals of A and B which 

contribute to forming the j-th diagonal c of C have respective 

subscripts whose sum is j . 
j 

Shifted-Symmetric Circulant Matrices 

We will primarily be dealing with the subclass of symmetric circulant 

matrices (a = a-j for j =O,l, ..., n-1). 
subclasses of circulant matrices which will be very useful. 

be an n x n  real circulant matrix. We define A to be upper or lower 

shifted-symmetric if and only if 

However, there are two other 
j 

Let A= (a ) 
j 

respectively, 
aj = a-j+l Or a-j = aj-l 

for j =1, 2 ,  ..., n - 1  . 

Shifted-symmetric circulant matrices have the following properties. 

Lemma 2: 

Let A and B be upper (lower) shifted-symmetric circulant 

matrices, then C=A+B is also an upper (lower) shifted-symmetric 

matrix. 
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Proof: 

Obvious. 

Lemma 3: 

Let A be an upper (lower) shifted-symmetric circulant matrix 

and let B be a symmetric circulant matrix. If C = A B  or C = B A ,  then 

C is an upper (lower) shifted symmetric circulant matrix. 

Proof: 

We will prove only the case where C = A B  and A is upper 

shifted-symmetric as the other results follow in an almost identical way. 

We first note that from lemma 1 C will be a circulant matrix. 

Next we suppose that 

onals a and a 

and the fact that a 

A is such that its only nonzeros lie on the diag- 

where a =a-p+l from shifted-symmetry. From (1) 
-p+l P P 

= a  we have -p+l n- (~-1) 

n -1 - 
and since C is a circulant 

for j = O , l ,  ..., n-1. The symmetry of B now allows us to conclude 

that cj = c-j+l or that C is upper shifted-symmetric. In the case 

(whichcan occurwhen n is odd) that a and a 

onal of A we have n-(p-1) = p or n =  2p-1 and that 

are the same diag- -p+l P 

c = a b  
j P j-p 
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= a  b = a b  = a b  ‘-j+l p n-(j-l)-p p 2p-l-(j-U-p P 4j-d 

and again the desired result follows from the symmetry of 

proof of lemma 3 now follows easily from lemma 2 and the fact that A 

is easily decomposed into a finite sum of upper shifted-symmetric matrices 

of the form above for which we have established the desired results. 

B. The full 

Lema 4: 

Let A be a lower shifted-symmetric circulant and let B be an 

upper shifted-symmetric circulant. If C-AB or C=BA, then C is a 

symmetric circulant. 

Proof: 

The proof is essentially identical to the proof of lemma 3 and 

will be omitted. 

Lemma 5: 

If A is an nxn lower or upper shifted-symmetric circulant 

matrix where n is even, then A is singular. 

Proof: 

If x an n-vector such that xT= (1, -1, 1, -1,. .., -1) then 

a straightforward calculation shows that A x = O .  

111. Basic Algorithm 

We will now consider the original problem of solving a linear system 

of equations Ax=b where A is an n x n  real nonsingular symmetric 

circulant matrix. We will also assume that n= 2‘ for some positive 

integer q > 1  . The solution of such matrix problems is often required 
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when numerically so lv ing  c e r t a i n  types of e l l i p t i c  and pa rabo l i c  p a r t i a l  

d i f f e r e n t i a l  equat ions when pe r iod ic  boundary condi t ions  are appl ied .  

The basic  i d e a  of c y c l i c  odd-even reduct ion  i s  t o  reduce t h e  problem 

of so lv ing  Ax=b  t o  t h a t  of so lv ing  a smaller problem ( n / 2 x n / 2 )  

xx = b' where has the  same b a s i c  p r o p e r t i e s  as does A and I is  

subvector cons i s t ing  of only t h e  even subsc r ip t ed  unknowns of t he  o r i g i n a l  

vec to r  x . The process  i s  then repeated on t h e  reduced problem Ax= b' . -- 

We terminate the  process  a f t e r  q - 1  reduct ion  s t a g e s  when t h e  remaining 

system i s  2 x 2 .  

More s p e c i f i c a l l y  w e  w i l l  de f ine  a permutation matr ix  P such t h a t  

PAPT has the  form 

PAPT = 

where A and A are symmetric c i r c u l a n t s  and A and A are 

respec t ive ly  lower and upper shifted-symmetric c i r c u l a n t s .  

1 4 2 3 

Next, w e  w i l l  

cons t ruc t ive ly  show how t o  de f ine  a mat r ix  Q such t h a t  

Q P U T  E-H 4 

- - 
where A is diagonal ,  A is  a lower shifted-symmetric c i r c u l a n t  and 

1 2 - 
A is the n / 2 x n / 2  reduced symmetric c i r c u l a n t  matrix. The s o l u t i o n  

of Ax=b  is then equiva len t  t o  t h e  s o l u t i o n  of t h e  system 

4 

[QPAP T ] Px = QPb 
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which can now be solved by solving the reduced problem X I =  . 
The matrix P is the nx n odd-even permutation matrix [ 7  3 which 

is obtained by permuting the rows of the nxn identity matrix so that 

the odd numbered rows appear sequentially first and the even numbered 

rows appear sequentially last. When A is a symmetric circulant matrix 

of the type we are considering, it not difficult to verify that 

PAPT = 

has the following properties: 

1. A and A are n/2xn/2 symmetric circulants and in fact 
1 4 

A = A  , 
1 4  

2. A is an n/2 xn/2 lower shifted-symmetric circulant, 

3. A is an n/2xn/2 upper shifted-symmetric circulant, 

4 .  AT=A . 

2 

3 

2 3  

Diagonal Elimination 

We will now describe how to construct the reduction matrix Q. The 

matrix Q will be the product of a sequence a matrices Qi each having 

the form 

(3) Qi 

or 
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( 4 )  

where T and S are r e s p e c t i v e l y  lower and upper s h i f t e d  symmetric 

c i r c u l a n t s ,  each having a t  most two nonzero diagonals .  

We w i l l  i d e n t i f y  t h e  diagonals  of t h e  matrices A - A  of (2) and 
1 4  

T and S of (3)  and ( 4 )  by 

A = ( a j )  , -(m- 1) z j  5 m -  1 
1 

A = (bj)  , - (m-  l)'< j < m - 1  - -  2 

T = ( t j )  , - ( m - l )  < j < m - 1  - -  

s = (sj) , -(m- 1 )  < j 2 m - 1  where m = n / 2  a - 

The reduct ion process w i l l  be constructed i n  

having two s teps .  

n/2 s t a g e s ,  each s t a g e  

T 
For t h e  i n i t i a l  p r e s e n t a t i o n  w e  w i l l  assume t h a t  PAP 

has no ze ro  e n t r i e s  and t h a t  no zeros  o t h e r  than those s p e c i f i c a l l y  

d e s i r e d  are introduced i n t o  t h e  matrix a t  any s t a g e .  

Stage 1 

( 1 )  - 
i n  A . 

m/ 2 1 
Step 1. Eliminate t h e  diagonal  a 

W e  def ine t h e  ma t r ix  Q by l e t t i n g  t = t  = - - m/2 , and 
a 

2c 
m/ 2 

1 0 -1 

t = O  f o r  j = 1 , 2 ,  ..., m -  2 .  C lea r ly  T i s  a lower shifted-symmetric 

c i r c u l a n t  with two nonzero diagonals.  
j 

Now w e  compute 

-10- 



Q P a T  = 
1 

and note that A ( 1 )  = A  + T A  and A ( ' ) = A  + T A  . Since T is lower 
1 1 3 2 2 4 

shifted-symmetric and A is symmetric, we have from lemma 3 that A (1 )  

4 2 

is a lower shifted-symmetric circulant as was A . Also, from lemma 4 
we have that A is a symmetric circulant. Moreover, we have from 

(1) that 

2 

1 

- 
a = a  + t c  + t  c m/2 m/2 o m/2 m-1 m/2-(m-l) 

(1) - 
has been eliminated from A . 

m/ 2 1 
so that the diagonal a 

in A 3  (1)  . 
m/ 2 and '-m/2+1 Step 2. Eliminate the diagonals c 

(Note that cmI2 = c - ~ / ~ + ~ .  1 
C 

m/2 (the other diagonals of S - We define Q by letting s = s  = -  

m/ 2-1 2 O 1  a 

being 0) and compute 

Q Q PAPT = 
2 1  K] 3 4 
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where = A  + S  A(1) and = A  + SA( ' )  . AS i n  s t e p  1, A(1)  and 

A(1) have the same r e s p e c t i v e  symmetry p r o p e r t i e s  as do A 

Also, w e  have 

3 3 1 4 4 2 3 

and A 4 
3 4 

- - - 
= c  + s a  m/2 m/2 0 m/2 + "larn/2-1 C 

= c  + s ;  
m/2 1 m/2-1 

- c  = o .  
m/2 m/2 = c  

- 
From upper shifted-symmetry w e  have t h a t  c -m/2+1 = 0 ,  so  w e  see t h a t  

e l iminates  two diagonals i n  A(1) . This completes Stage 1. 42 3 

Stage 2 

- (2  Step 1. Eliminate  t h e  diagonals  af(m/2-1) i n  Al 

m/2 - 1 

m/2 - 1 

a 

3 0 -1 C 
W e  define t h e  matr ix  Q by s e t t i n g  t = t  = - 

and compute 

Q Q Q PApT = 
3 2 1  E] 3 4 

where A ( 2 ) =  + T A(') and A(2) = + TA") . Again from 

lemmas 3 and 4, A ( 2 )  and A ( 2 )  have t h e  des i r ed  symmetry p r o p e r t i e s  

1 1 3 2 2 4 

1 2 - 
i n  A ( 2 )  w e  have 

1 
Computing am/2 - 1 

a = a  m/2-1 m/2-1 + t o c m / 2 - 1 + t m - 1 C m / 2 - 1 - ( m - 1 )  

m/2 -1 + t o  'm/2 -I+ t m - l  '-rn/2 = a  

+ o = o .  m/2 - 1 - am/2 -1 = a  
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- 
p-- JJY §-yim€+-*- L L Y  th i s  ShGVS t h a t  

duced i n  Stage 1 remain because A ( ’ )  

a -(m/2 -1) = 0 . Moreover, t h e  zeros  i n t r o -  

is  upper shifted-symmetric and 
3 

= o .  + tm -1 ‘-m/2 +I = o + o  

- ( 2 )  i n  A3 . and ‘-m/2+2 Step 2. Eliminate t h e  diagonals c ~ / ~ - ~  

C 
We d e f i n e  Q by s e t t i n g  s = s  = - - m/2-1 

m/2 -2 
and compute 

4 0 1  a 

Q Q Q Q  
4 3 2  

PAPT = 
1 

( 2 )  

3 
( 2 )  = A ( 1 )  + S  A ( 2 )  . A s  befo re ,  A where A ( 2 )  = A ( ’ ) +  S A ( 2 )  and A 

and A (2)  have t h e  des i r ed  symmetry p r o p e r t i e s .  We a l s o  have 

3 3 1 4 4 2 

4 

- - 
= c  = C  + s 5  + s a  

-m/2+2 m/2-1 m/2-1 0 m/2-1 1 m/2-2 C 

= o  = c  m/2 -1 + O ‘m/2-1 

and 

- - 
= c  + s z  + s z  -m/2+1= ‘m/2 m/2 0 m/2 1 m/2-1 C 

= o + o + o = o  

so t h e  d e s i r e d  diagonals  have been el iminated and those  previously 

el iminated remain zero. 

-13- 



Notice t h a t  w e  are e s t a b l i s h i n g  a band of zeros (aj = O  f o r  

m/2- 1 < j < m / 2 + l  and c = O  f o r  m/2 -1  5 j - < m/2+2) koth above 

and below the main diagonal.  
j - -  

We now proceed induc t ive ly  and assume t h a t  s t a g e  k of t h e  process  

has  been successful ly  completed and t h a t  A ( ~ )  = (a j )  i s  a symmetric 

c i r c u l a n t  and t h a t  a = 0 f o r  m/2 - (k- 1 )  5 j 5 m/2+ (k - 1) and 

1 

j 
is an upper shifted-symmetric c i r c u l a n t  w i th  c = O  f o r  

A(k) 3 = ( c j )  j 
m/2- ( k - 1 )  - < j 5 m / 2 + k .  We now proceed t o  t h e  next  s t age .  

Stage k + 1 

- ( k +  1) Step 1. Eliminate t h e  diagonals  a f (m/2-k)  i n  A, 
- 

m / 2  - k 

m/2 - k 

a 
by s e t t i n g  t = t = - - 

We define Q2 (k + 1)-1- ‘2, + 1 0 -1 C 

and compute 

Q2k +1 ‘2, . . .QIPAP’ 

where A ( k +  = A(k) + T A‘,”’ and A2 (k+l) = A(k) + TA(k) . From lemmas 
1 1 2 4 

3 and 4 ,  A (k+l)  and A ( k + l )  have t h e  d e s i r e d  symmetry p r o p e r t i e s .  

Also 

1 2 

- 
= a  a?(m/2-k) m/2- k + t o  ‘m/2-k +tm-1Cm/2-k-(m-1) 

m/2-k-am/2-k  + tm-1C-m/2-k +1 = a  

-14- 



from t h e  induct ion  hypotheses. 

t h a t  = 0 f a r  m/2 - (k - 1) < j < m / 2  + (k- 1 )  . L e t  ^a be one of 

these  diagonals .  We have 

To complete t h i s  s t e p  w e  need t o  v e r i f y  

P - -  j 

= o  - - - (m - p - 1 )  o +  0 + tm - lCm tm -1 ‘p +I 
= 

from t h e  induct ion  hypotheses s ince  m/2- ( k -  1 )  < - p + l  - < m / 2 + k .  

- (k +I> S t e p  2. El iminate  t h e  diagonals cmI2 - and c -m/2 + k + 1 i n  A3 

We de f ine  Q2k+2 by s e t t i n g  s = s 
C 

= - m / 2  - k  and compute 
a 0 1 

m / 2  - k-1 

(k+1)  = A(k) +sA:k+1) . Lemmas 
4 where 

(k + have t h e  des i r ed  3 and 4 al low us t o  conclude tha t  and A 

symmetry p rope r t i e s .  Also 

A (k+ l )  = A (k) + S A(k + ‘I and A, 
3 3 1 

4 3 

- - - - = O  as before .  
C -m/2 +k+ 1 = ‘m/2 -k=  ‘m/2 -k + ’oam/2 -k+ ‘lam/2 -k-1  

- 
Now compute c where m / 2  - (k- 1 )  < - -  p < m / 2 +  k . We have 

P 

- 
c = c + s a  + s a  

p P 0 P 1 P - 1  

= o t o + o = o  

from s t e p  1 and t h e  induct ion hypotheses. 
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This completes the  d e s c r i p t i o n  of t h e  b a s i c  algorithm. Af t e r  m/2 

s t a g e s  the  reduct ion i s  complete s i n c e  A (m/2) 0 , A(m/2) is a diag- 
3 1 

ona l  matrix and A (m/2) is  t h e  reduced symmetric c i r c u l a n t .  
4 

The basic  a lgori thm as descr ibed above can f a i l  a t  e i t h e r  s t e p  1 

o r  s t e p  2 of any s t a g e  i f  t h e  diagonal  used as a d i v i s o r  i n  t h a t  s t e p  

i s  zero. We w i l l  now d i scuss  how t o  overcome t h i s  d i f f i c u l t y .  Suppose 

a t  s t a g e  k + l  and s t e p  1 t h e  d i v i s o r  diagonal  c 

case w e  search t h e  remaining diagonals  c f o r  1 - < j < m/2-k f o r  t h e  

nonzero diagonal w i th  t h e  l a r g e s t  s u b s c r i p t  less than 

t h i s  as our d i v i s o r .  

t h e  d iv i so r  diagonal.  Next w e  d e f i n e  Q 

= O  . I n  t h i s  m/2 - k 

j’ 
m/2-k and use  

be L e t  c m / 2  - k - p ’ where 1 5 p - < m / 2  - k -  1, 

by s e t t i n g  t = t - - 
2k+ 1 P - P + l  

and by s e t t i n g  t h e  remaining diagonals  t o  zero. Now w e  m/2-k 

m / 2  -k-p 

a - 
C 

compute 

Since p # 0, 

A(k) = ( c j )  is 
3 

a + t  c C 
m/2 -k p m/2 -k- p+tm-(p-  1) m/2 -k-m+(p -1) 

a m/2 -k-am/2 -k+ tm-(p -1) ‘-(m/2+k-p+1) 

- - 
+ tm-(p-l)  ‘m-(m/2+ k-p +1) tm- (p-1) ‘m/2 -k+p-1 

t h e  induct ion hypothesis  may be extended so  t h a t  

such t h a t  c = O  f o r  m / 2 - ( k - l ) - p <  - -  j < m / 2 + k + p .  
j 

A r o u t i n e  c a l c u l a t i o n  now shows t h a t  m / 2 - k + p - 1  l i e s  w i t h i n  t h i s  

range s o  w e  conclude t h a t  

- 
= o .  +(m/2 - k)  a 

- 

W e  have l e f t  t o  show t h a t  t h e  previously el iminated diagonals  are l e f t  

undisturbed by t h i s  modif icat ion.  L e t  a be  such t h a t  
Q 
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m/2- ( k - 1 )  < q < m/2+ ( k -  1 ) .  Then, - -  

A simple c a l c u l a t i o n  shows t h a t  both s u b s c r i p t s  q - p  and q + p - 1  l i e  

w i t h i n  t h e  range of t h e  extended induct ion hypothesis  above s o  a = O  . c 

q 
I f  a t  some s t a g e  t h e  search for  a nonzero diagonal  of A(k) y i e l d s  

3 

t h e  conclusion t h a t  A (k) 

involving t h e  symmetric c i r c u l a n t  A(k)  

must be nonsingular s i n c e  

algori thm can then be  app l i ed  t o  each. 

0 , then t h e  problem s p l i t s  i n t o  two problems 
3 

and A(k). Both of t h e s e  matrices 
1 4 

A w a s  assumed nonsingular ,  and t h e  above 

I f  t h e  b a s i c  a lgori thm should f a i l  during s t a g e  k + l  and s t e p  2,  

then w e  search t h e  - i .e. t h e  d i v i s o r  diagonal  

remaining diagonals  a f o r  0 < - -  j < m / 2 - k - 2  f o r  t h e  nonzero diag- 

ona l  with t h e  l a r g e s t  s u b s c r i p t  l e s s  than m / 2 - k - 1  

our d i v i s o r .  L e t  

am/2 -k -1=  0 ,  - 
j’ 

and use  t h i s  as 

where 1 < - -  p < m / 2 - k - 1  be  t h i s  

m/2 - k 

m/2 - k - 1 - p 

C 
m/2 - k - 1 - p ’ 

d i v i s o r .  Q 2 k + 2  i s  def ined by s e t t i n g  S ~ + ~ = S  = - - 
a -P 

and by s e t t i n g  t h e  o t h e r  diagonals t o  zero.  

c u l a t i o n s  now show t h i s  allows s tep 2 t o  be completed as before .  I f  

t h e  search fo r  a nonzero diagonal d i v i s o r  y i e l d s  t h e  conclusion t h a t  

A(k+l) E 0 ,  then w e  would have t o  conclude t h a t  t h e  matrix 

Q 2 k + 1  1 

Completely analogous cal- 

1 

. . .Q PAPT i s  s i n g u l a r  because i t  i s  of t h e  form 
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and &) i s  upper shifted-symmetric and hence s i n g u l a r  by lemma 5. 

would l ead  us t o  t h e  conclusion t h a t  A must be  s i n g u l a r  which i s  a 

contradict ion.  W e  must t h e r e f o r e  conclude t h a t  t h e  search f o r  a non- 

This 
3 

zero d iv i so r  diagonal  w i l l  never f a i l  i n  s t e p  2 i f  

t o  begin with. 

A is  nonsingular 

This completes t h e  d e s c r i p t i o n  of one odd-even reduct ion s t e p  f o r  

symmetric c i r c u l a n t  matrices. Af t e r  each reduct ion,  another  odd-even 

reduct ion s t e p  may be  performed on t h e  r e s u l t i n g  reduced ma t r ix  and 

t h i s  def ines  t h e  process  of c y c l i c  odd-even reduct ion.  W e  terminate  

t h e  process when t h e  reduced matrix is  2 x 2  and s o l v e  t h i s  system 

e x p l i c i t l y .  The f i n a l  s o l u t i o n  i s  then obtained by a back s u b s t i t u t i o n  

l i k e  process. 

W e  have cons t ruc t ive ly  and induc t ive ly  proved our  main theorem. 

Theorem 

I f  A is  a n  n x n  nonsingular ,  symmetric c i r c u l a n t  matr ix  

where n -  2' f o r  some p o s i t i v e  i n t e g e r  p > 1 , then t h e  l i n e a r  system 

A x = b  may be solved by c y c l i c  odd-even reduction. 

W e  remark t h a t  t h e  o r i g i n a l  work of Rodrigue, Madsen and Karush 171 

w a s  d i r ec t ed  toward t h e  s o l u t i o n  of banded matrices on v e c t o r  processors .  

I n  t h i s  paper w e  chose t h e  non-banded s e t t i n g .  

obvious t h a t  t h e  above algori thm i s  a p p l i c a b l e  to"banded"symmetric 

However, i t  should be 

c i r cu lan t s ,  i .e .  n x n  symmetric c i r c u l a n t s  such t h a t  

= 0 f o r  j = 0 ,  1, 2 , * - . ,  q where 0 5 q < n /2  n/2 f j a 
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It can be shown that in this case, if one starts with a banded symmetric 

circulant , then the reduced matrix will also be simi1arly"banded"with at 

most the same number of nonzero diagonals as were in the original matrix. 

TV. Quadratic Convergence 

It has been proved [ 3 3 ,  under certain dominance conditions, that 

the off-diagonal elements of the reduced matrices converge quadratically 

to zero when cyclic odd-even reduction is applied to certain tridiagonal 

systems. 

similar behavior when our cyclic odd-even reduction algorithm is applied 

to pentadiagonal symmetric circulant matrices. 

To illustrate the use of the algorithm, for "banded" matrices we 

will let A be the nxn (n even) pentadiagonal symmetric circulant 

We will now establish sufficient conditions which insure a 

[ T b  a 
- 

a b  

(the first of the reduction matrices which is not just Q, The matrix 

the identity'matrix) and PAPT are as follows 
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PAPT 

The matrices Q 
9' 

I 

- 

l a  a 

a 
a 1 

b b  

b \b b 

and QqPAPT of the next step are t l  

Qq. 1 

b b 

l a  a 

'\a a a 1  

Q PAP' 
q 

1 
1-2a 

b b  

b 

b' ;% a' 

a' 

l a  a 

a 
a 1 

I 

The final matrix Q Q PAPT is shown next. Note that for 
- q+l q 

convenience we have scaled the reduced matrix A so that its main 
4 

diagonal is one. 
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Q,, Q q P N T  = 

i - 2a 

0 

where b' and a '  are as before and 

- 2 a - b 2  b =  
1 - 2b2 + 2a2 

- a 2  a =  
1 - 2b2 + 2a2 

I f  w e  denote t h e  diagonals  of each succeeding reduced ma t r ix  by 

bi f o r  i = 1 , 2 ,  ..., wi th  a = a  and b = b ,  then from ( 5 )  w e  see 

t h a t  t h e s e  diagonals s a t i s f y  the following r ecu r s ion  r e l a t i o n s  ( u n t i l  

t h e  reduced matr ix  becomes less than 8 x 8  i n  s i z e )  

a and i 

0 0 

2 a i - b l  - - 
b i + l  1 - 2 b 2 + 2 a i  . 
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We now state and prove a quadratic converge theorem concerning these 

diagonals. 

Theorem 
1 If O < a < g  and [bo] < 7 , then 

- 0  

Proof:  

The proof will be by induction. For i = 1  we have 

a2 
0 

a' 
a r O  < 

- 8  - 
1 - 2b2 

0 
1-2b2+2a2 

0 0 

2a - b 2  2a 
0 0 0 

1 
b =  - 

1-2b2+2a2 2 
0 0 

and 

or 

2a -b2 -b2 - b 2  
b =  0 0  > 0 ' - - 3 =-&[2] 

1 - 2b2 + 2a2 1-2b2+2a 0 0 
0 0 

2 -  

(201 

= 1 - 2bi+ 2at and note that 

i and will show that this 

d 1 -  > 9 . di+l For convenience we define 

We assume that the results are true for 
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implies  they are a l s o  t r u e  f o r  i +  1. We f i i z h l e  8s ---& P Q I L  V I  -c &L- L l l C  * - A - - ~ * - -  I l l U U L L A U l I  

t h a t  di 2 6 . F i r s t ,  we have 

> 1 - 2 ( 9 2  = 3 . - 

Also, 
1 2  

and 

2 

- b i  - 
> 

6 
- > -  

- 6  bi+l 

max(2a 0 , b 2 >  0 )"" 
= - 1( 

m2 

or 
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which completes the induction and shows that the off-diagonal elements 

converge quadratically to zero under the hypotheses of the theorem. 
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